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Abstract. This paper is, in a certain sense, a supplement of S. Dolecki’s paper Mul-
tisequences [Quaest. Math. 29 (2006), 239–277]. We describe some operations on
cascades, together with their influence on a contour and sometimes on other notions
connected with cascades. We illustrate these operations by a sketch of their use in
some proofs of the results published last years concerning (ultra)filters. The paper
contains also some new results on subsequential filters, answering a question from
[Garcia-Ferreira S., Uzcáteui C.: Subsequential filters, Toppology. Appl. 156 (2009),
2949–2959]. To make the paper self-contained, we repeat all necessary definitions and
re-describe some properties.
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1. Preliminaries

Monotone sequential cascades were introduced by S. Dolecki and F. Mynard in [5]
to describe topological sequential spaces. Recently they were also used by S. Garcia-
Ferreira and C. Uzcáteui in [10, 11] as a tool to investigate subsequential spaces. The
reader interested in topological/convergence use of cascades is invited to look also at
[6, 7]. Here we focus on pure set-theoretical aspects of cascades and, in fact, on infinite
combinatorics used to this end. For brevity we omit proofs of quoted theorems and
present only sketches of those of them, which show the typical way how to work with
cascades.

A cascade is a tree V , ordered by “⊑”, without infinite branches and with the
least element ∅V . A cascade is sequential if for each non-maximal element v of V
(v ∈ V \maxV ) the set v+V of immediate successors of v (in V ) is countably infinite.
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We say that v is a predecessor of v′ (we write v = pred (v′) or v = v′−V ) if v′ ∈ v+V .
We write v+ (v−) instead of v+V (v−V ) if it is known in which cascade the successors
(predecessor) of v is considered. As a convention, since maxV is a countably infinite
set, we think about maxV as of a copy (or of a subset) of ω.

The rank of v ∈ V (rV (v) or r(v)) is defined inductively as follows: r(v) = 0 if
v ∈ maxV , otherwise r(v) is the least ordinal greater than the ranks of all immediate
successor of v. The rank r(V ) of the cascade V is, by definition, the rank of ∅V .
Note that for each countable ordinal α there is a (monotone – see next paragraph)
sequential cascade of rank α.

The cascade V is said to be monotone if it is possible to order all sets v+ (for
v ∈ V \maxV ) in ω-sequences (vn)n<ω so that for each v ∈ V \maxV the sequence
(r(vn)n<ω) is nondecreasing. In this case we fix such an order on V without indication.
Equivalently, a cascade is monotone if for each v ∈ V \ ∅V the set {v′ ∈ (pred (v))+ :
r(v′) < r(v)} is finite. Then we can introduce the lexicographic order <lex on V in

the following way: v′ <lex v′′ if v′ ⊐ v′′ or if there exist ṽ′ ⊑ v′, ṽ′′ ⊑ v′′ and v

such that ṽ′ ∈ v+ and ṽ′′ ∈ v+ and ṽ′ = vn, ṽ′′ = vm and n < m. While we have
fixed the lexicographic order on a cascade V , we can label elements of V by finite
sequences of natural numbers of length r(V ) or less, by the function f which preserves
the lexicographic order, vf(v) is the resulting name for an element of V , where f(v) is
the mentioned sequence. A function f : V → ω<ω is defined inductively by: f(∅V ) = ∅
and if f(v) is already defined, then f(vn) = f(v)⌢n (where vn is the n-th element of
v+). For v ∈ V we denote by v↑V a subcascade of V built by v and all successors of v.

For l ∈ ω<ω by Vl we denote v
↑
l and by Lα,V we understand {l ∈ ω<ω : rV (vl) = α}.

It will be clear from the context whether vn is the n-th element of v+, or vn is the
n-th element of ∅+V .

To define filters related to cascades we need the following notion of confluence
of cascades, which should be mentioned in Section Operations, but for the above
sake is defined here. Let W be a cascade and let {V w : w ∈ maxW} be a set of
pairwise disjoint cascades such that V w∩W = ∅ for each w ∈ maxW . The confluence
of cascades V w with respect to the cascade W (we write W " V w) is defined as
a cascade constructed by the identification of w ∈ maxW with ∅V w and according to
the following rules:

(1) ∅W = ∅W"V w ;
(2) if w ∈ W \maxW , then w+W"V w

= w+W ;
(3) if w ∈ V w0 , for a certain w0 ∈ maxW , then w+W"V w

= w+V w0

;
(4) in each case we also assume that the order on the set of successors remains

unchanged.

By (n) " Vn we denote W " V w where W is a sequential cascade of rank 1. Each
cascade V of rank > 1 may be uniquely described as a confluence of cascades of rank
less than r(V ) – simply V = (n) " Vn. As a convention, if u is a filter(-base) on
A ⊂ B, then we identify u with the filter on B for which u is a filter-base.

If V is a monotone sequential cascade of rank 1 then the contour of V (in symbols∫
V ) is a filter on maxV defined inductively: if r(V ) = 1, then

∫
V is a Fréchet filter

on maxV and if V = (n) " Vn, then U ∈
∫
V if and only if U ∩maxVn ∈

∫
Vn for

almost all n < ω. If u is a filter such that u =
∫
V for some monotone sequential
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cascade V , then we say that u is a monotone sequential contour. We assume (if not
indicated otherwise) that all filters in this paper are considered on ω.

The contour of a cascade is strongly related to the following operation defined for
a family of filters U = {us}s∈S on a fixed set and for a filter u on S. The operation is
probably best known as a Frolik sum, but also as a limit of filters and as a contour of
filters, and it is denoted by

∑
u us, limu us and

∫
u
us, respectively. Here we keep the

last notion, since we did it in previous papers.

∫

p

U =

∫

p

us =
⋃

P∈p

⋂

s∈P

us.

Similar constructions were used by several authors ([3, 9, 12, 13]).
In the paper we will mainly work on four types of filters – monotone sequential

contours, elements of the P-hierarchy, ordinal ultrafilters and subsequential filters.
J.E. Baumgartner in ([1]) introduced a notion of ordinal ultrafilters, hierarchized in

an ω1-sequence of classes of ultrafilters. We say that u is a Jα-ultrafilter (on ω) if for
each function f : ω → ω1 there is U ∈ u such that ot (f [U ]) < α, where ot (·) denotes
the order type. An ultrafilter u on ω is a strict Jα-ultrafilter if u is a Jα-ultrafilter
and u is not Jβ-ultrafilter for any β < α. For additional information about ordinal
ultrafilters a look at [1, 2, 16, 18, 19, 20, 21, 22] is recommended.

Another way of classifying ultrafilters into ω1-sequence of classes is P-hierarchy,
which has been defined in [20] as follows: u ∈ Pα if there is no monotone sequential
contour Vα of rank α such that Vα ⊂ u, and for each β in the range 1 6 β < α there
exists a monotone sequential contour Vβ of rank β such that Vβ ⊂ u. Moreover, if
for each α < ω1 there exists a monotone sequential contour Vα of rank α such that
Vα ⊂ u, then we write u ∈ Pω1

. For additional information about P-hierarchy see
[21].

In [10] we presented a following definition of subsequential filters introduced by
N. Noble in [17]: A space X is said to be sequential if for each non-closed subset A

of X there is a sequence (xn)n<ω in A that converges to a point in X \A. A space is
called subsequential if it can be embedded in a sequential space. If F is a free filter on
ω, then the symbol ξ(F) stands for the space whose underlying set is ω ∪ {F}, where
ω is a discrete subset and a basic neighbourhood of F is of the form F ∪ F , where
F ∈ F . A free filter F is called subsequential if the space ξ(F) is subsequential.

If for some monotone sequential cascade V we restrict the lexicographic order
of V to maxV , then we obtain a set order-isomorphic to an indecomposable ordinal
number, recall that ordinal α is indecomposable if α = ωβ for some ordinal β. Simillar
relation was introduced first by Dolecki and Watson in [7], then slightly changed to the
version presented by the author. This relation lets us use cascades in the investigation
of ordinal ultrafilters. Formally for a monotone sequential cascade V by fV we denote
each lexicographic order respecting function maxV → ω1, i.e., such a function that
v′ <lex v′′ if and only if fV (v

′) < fV (v
′′) for each v′, v′′ ∈ maxV . If f : ω → ω1

and f = fV for some monotone sequential cascade V (i.e., by convention mentioned
before, there is a bijection g : maxV → ω such that f ◦ g = fV ), then we say that V
corresponds with the order of f .



262 A. Starosolski

2. Operations

2.1. Confluence ≈ contour operation

The confluence, together with a contour operation (as we see these two are twins
for sequential cascades/contours), are probably the most important operations on
cascades and fruitful on filters. The definition has been given above, here we give
a relation between them:

Let W be a cascade and let {V w : w ∈ maxW} be a set of pairwise disjoint
cascades such that V w ∩W = ∅ for each w ∈ maxW . Then

∫
(W " V w) =

∫
∫
W

∫
V w.

Its typical use is for instance the proof of the fact that there are free ultrafilters
which are not P-points. But what is especially interesting: although this operation
increases the “level of complication” of a filter, it does not increase it too much. We
will show it in three cases - of ordinal ultrafilters, of P-hierarchy and of subsequential
contours.

2.1.1. Ordinal ultrafilters

Dolecki and Watson proved in [7] that if we look on maximal elements of cascades
as at the ordered sets, then confluention gives as an ordered sum of order types,
formally

Theorem 2.1 ([7]).

1) Let W be a cascade and let {V w : w ∈ maxW} be a set of pairwise disjoint
cascades such that V w ∩W = ∅ for each w ∈ maxW . Also, let fV w , fW be order
respecting functions. Then

ot (fW"V w (max (W " V w))) =
∑

ot (fW )(maxW )

ot (fV w(maxV w)),

where ot (·) denotes order type and
∑

(·)(·) denotes ordered sum of ordinal num-
bers.

2) Let W be a monotone sequential cascade and let fW be an order respecting func-
tions. Then ot (fW (maxW )) = ωr(W ).

Since cascades define order functions of fixed rank, and since confluence does not
incerase them too much, we may expect the following result

Theorem 2.2 ([1, Theorem 4.2 restated in virtue of its proof]). Let (αn)n<ω be
a nondecreasing sequence of ordinals less than ω1, let α = lim

n<ω
(αn). If (un) is a discrete

sequence of strict Jωαn -ultrafilters and u is a strict Jω2-ultrafilter, then
∫
u
un is a strict

Jωα+1-ultrafilter.
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Since Baumgertner also proved that the class of strict Jω2-ultrafilters is precisely
the class of P-points [1, Theorem 4.1], the above theorem shows that existence of
P-points implies non-emptiness of classes of ordinal ultrafilters of successor indices
(and it was the original claim of Theorem 2.2.)

2.1.2. P-hierarchy

In the sequel we will use the following notation: for an ordinal α, by (−1 + α) we
will understand α if α > ω and α− 1 if α < ω.

Theorem 2.3 ([20, Theorem 2.5]). Let (αn)n<ω be a nondecreasing sequence of or-
dinals less than ω1, let α = lim

n<ω
(αn) and let 1 < β < ω1. If un ∈ Pαn

is a discrete

sequence of ultrafilters and u ∈ Pβ, then
∫
u
un ∈ Pα+(−1+β).

Since we also proved that the class of P2-ultrafilters is precisely the class of P-
points [20, Proposition 2.1], the above theorem shows that the existence of P-points
implies non-emptiness of classes of P-hierarchy of successor indices.

The previous sentence is a “homeomorphic copy” of the last sentence in subsection
concerning ordinal ultrafilters, also main theorems of those subsections are similar
and filters built in proofs of them are the same, so one can expect that classes of
ordinal ultrafilters and of P-hierarchy may be the same. To show that it is not the
case, we proved that

1) [20, Theorem 3.9] It is relatively consistent with ZEC that successor classes (with
the same index) of ordinal ultrafilters and of P-hierarchy intersect, but are dif-
ferent;

2) [21, Theorem 6.5] (CH, and in unpublished yet article under weeker assumption)
all classes of P-hierarchy are nonempty, while [22, Theorem 3.14] (ZFC) the class
of strict Jωω -ultrafilters is empty.

On the other hand, there are many other similarities between these hierarchies of
ultrafilters, for more details see papers cited above.

2.1.3. Subsequential filters

Following [10] we define degree of subsequentiality of subsequential filters. Let X

be a space and let A ⊂ X . We put A0 = A and for each ordinal number θ we define
Aθ = {x ∈ X : ∃(xn)n<ω ⊆ Aµ, (xn) → x} if θ = µ + 1, and Aθ =

⋃
µ<θ A

µ if θ is
a limit ordinal. It is known that a space X is sequential if and only if there is θ < ω1

such that Aθ = clXA (where clXA denotes the closure of A in X) for all A ⊆ X .
The minimal ordinal θ with this property is called the sequential order of a sequential
space X and will be denoted by σ(X). For a sequential space X and x ∈ X , we define

σ(x,X) = min{θ 6 ω1 : ∀A ∈ P(X)(x ∈ clXA ⇒ x ∈ Aθ)}.

If S is a sequential space that contains ξ(F), then the sequential order of F inside
the space S is the ordinal number
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σ(F , S) = min{θ 6 ω1 : ∀A#F(F ∈ Aθ)},

where the iteration Aθ is taken inside of the space S. The subsequential order of
a subsequential filter F is the ordinal number

σ(F) = min {σ(F , S) : S is a sequential space with ξ(F) ⊆ S}.

In the mentioned paper authors proved the following result:

Theorem 2.4 ([10, Theorem 3.2 in notation of this paper]). Let (An)n<ω be a parti-
tion of ω into infinite sets. Let Fn be a subsequential filter on An and let F be a sub-
sequential filter on ω. Then σ(

∫
F Fn) 6 min {sup {σ(Fn) : n > m} : m < ω}+ σ(F).

and asked weather inequivalence can be replaced by equivalence, formaly:

Question 2.5 ([10, Question 3.3 in notation of this paper]). Let (An)n<ω be a parti-
tion of ω into infinite sets. If F is a subsequential filter on ω and Fn is a subsequential
filter on An, is it true that σ(

∫
F Fn) = min {sup {σ(Fn) : n > m} : m < ω}+ σ(F)?

We answer the question negatively (see Examples 2.8, 2.9, 2.10 and Theorem 2.15).
Moreover, we find more precise estimation of σ(

∫
F Fn) (Theorem 2.6) and show that

it is still not the best possibile (see Examples 2.8, 2.9 and Theorem 2.15), but first
let us define:

Let (An)n<ω be a partition of ω into infinite sets. Let Fn be a subsequential filter
on An and let F be a subsequential filter on ω. Then

σ((Fn)modF) is by definition min {sup {σ(Fn) : n ∈ F} : F ∈ F}.

Theorem 2.6. Let (An)n<ω be a partition of ω into infinite sets. Let Fn be a sub-
sequential filter on An and let F be a subsequential filter on ω. Then σ(

∫
F
Fn) 6

σ((Fn)modF) + σ(F).

Proof. We proceed similarly to the proof of [10, Theorem 3.2]. Take S0 such that
ξ(F) ⊂ S0 = cl S0

ω, σ(F , S0) = σ(F) and Sn such that ξ(Fn) ⊂ Sn = cl Sn
An,

σ(Fn, Sn) = σ(Fn). Without loss of generality we may assume that Si ∩ Sj = ∅ for
0 6 i < j. Let S be a quotient space obtained by identification of Fn ∈ Sn with n ∈ S0.
Such a space is sequential by [8]. For F ∈ F define F ↑ =

⋃
n∈F Sn. Let A#

∫
F Fn

and let F ∈ F be such that σ((Fn)modF) = sup {σ(Fn) : n ∈ F}. There exists an
open neighbourhood F̃ of

∫
F Fn (in S) such that F ↑ ⊂ F̃ and (F ↑)c ∩ F̃ = ∅. Split A

into A ∩ F ↑ and A ∩ (F ↑)c. Then
∫
F
Fn 6∈ cl S(A ∩ (F ↑)c) and

∫
F
Fn ∈ cl S(A ∩ F ↑).

Moreover, if
∫
F Fn ∈ Aθ, then

∫
F Fn ∈ (A ∩ F ↑)θ1 for some θ1 > θ. By choice of Sn

for each n ∈ F ⊂ S there is Fn ∈ (A ∩ F ↑)σ(Fn) and also F ∈ F σ(F). Thus
∫
F
Fn ∈

(A ∩ F ↑)sup {σ(Fn):n∈F}+σ(F), so σ(
∫
F Fn, S) 6 sup {σ(Fn) : n ∈ F}+ σ(F) and so

σ(
∫
F
Fn, S) 6 σ((Fn)modF)+σ(F), therefore σ(

∫
F
Fn) 6 σ((Fn)modF)+σ(F). ⊓⊔

Although the above Theorem 2.6 extends Theorem 2.4 (see Example 2.10), we can-
not replace the inequality with equality, what may be seen in the following Examples
2.8 for successor σ(F) and 2.9 for limit σ(F), which answer Question 2.5.

To describe examples we need to recall definition (from [10]) of the power of Fréchet
filter. To this end we need an auxiliary operation: Fix filter F on ω and a partition
{An : n < ω} of ω into infinite subsets. For each n < ω, let Fn be a filter on An. Then
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we define
∏

Fn = {
⋃

n<ω Fn : ∀n < ω(Fn ∈ Fn}). Note that
∏

Fn =
∫
{ω} Fn, where

{ω} is a principal filer. Additionally for each ordinal θ < ω1 we fix strictly increasing
unbounded sequence {θn : n < ω} in θ consisting of no limit ordinal numbers. Let
F1

r = Fr,

– if θ = µ + 1 and µ is a successor, then Fθ
r =

∫
Fr

Fn, where Fn are copies (by

bijection) of Fµ
r on An;

– if θ is a limit, then Fθ
r =

∏
Fn and Fθ+1

r =
∫
Fr

Fn where Fn are copies (by

bijection) of Fθn
r on An, note also that by LFPP (see section “Almost the same

cascades”) considering Fθ+1
r for limit θ it is sufficient for the sequence mentioned

above to be nondecreasing (instead of increasing). Note also that for each suc-
cessor countable θ there is a monotone sequential cascade V such that Fθ

r =
∫
V

and

1) θ = r(V ) for finite θ;
2) θ = r(V ) + 1 for infinie θ.

To have the inverse situation as well, we would have to allow different sequence of
ordinals that converges to a limit ordinal number in the definition.

Theorem 2.7 ([11, Theorem 4.8]). σ(Fα
r ) = α.

Example 2.8. Let (An)n<ω and (Bk)k<ω be partitions of ω into infinite sets. Let
Vn = Fr(An) for even n and Vn = F2

r (An) for odd n and let F =
∫
Fr

Vn. Define

Fk = F2
r (Bk) for k ∈ An for even n and Fk = Fr(Bk) for k ∈ An for odd n.

Then
∫
F Fk = F4

r for some partition and σ(
∫
F Fk) = 4 by Theorem 2.7, while the

estimation of σ(
∫
F
Fk) by Theorem 2.4 and by Theorem 2.6 is 5.

Example 2.9. Let (An)n<ω and (Bk)k<ω be partitions of ω into infinite sets. Let
F =

∫
Fr

Fr(An). Define Fk = Fk
r (Bk) for k ∈ An. Then

∫
F
Fk = Fω+1

r and by

Theorem 2.7 σ(
∫
F
Fk) = ω+1, while the estimation of σ(

∫
F
Fk) by Theorem 2.4 and

by Theorem 2.6 is ω + 2.

Example 2.10. Let (An)n<ω and (Bk)k<ω be partitions of ω into infinite sets. Let
F =

∫
Fr

Fn(An) and let k(n) be a fixed point in An. Let F =
∫
F
Fr(An), Fk = Fr(Bk)

for k ∈ An, k 6= k(n) and Fk(n) = F2
r (Bk(n)). Then the estimation of σ(

∫
F Fk) by

Theorem 2.4 is 4, while by Theorem 2.4 is 3, and this is the correct subsequential
order of

∫
F
Fk.

Above examples may suggest that σ(
∫
F Fn) = min {sup {σ(Fn) + σ(F), : n ∈ F} :

F ∈ F}, but it is not the case.

Example 2.11. Let (An)n<ω and (Bk)k<ω be partitions of ω into infinite sets. For

each n < ω define fn : An −→ ω as an arbitrary fixed bijection. Let Fk = F
fn(k)
r (Bk)

for k ∈ An. Then (
∫
Fr

Fk) = Fω+1
r , and so by Theorem 2.7 σ(

∫
F Fk) = ω + 1, while

by formula above it is ω.

We finish this section by stating a theorem showing how independent is σ(
∫
F
Fn)

from σ((FnmodF) and from σ(F). To prove it we need three remarks, which proofs
are easy to check.
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Remark 2.12. Let α be a successor countable ordinal and β a countable ordinal.
Then

∫
Fβ

r
Fn = Fα+β

r , where (Fn) are Fα
r on distinct elements of some partition of

ω.

Remark 2.13. Let (An)n<m be a finite(!) partition of ω and let F be a subsequential
filter such that An#F for each n < m. Then σ(F) = max {σ(F |An

) : n < m}.

Remark 2.14. (Folklore) Under assumptions of Theorem 2.15, there are γ1, γ2 such
that 1 6 γ1 6 α, 1 6 γ2 6 β and γ1 + γ2 = γ.

Theorem 2.15. Let α,β be countable ordinals, let δ(α, β) = α+β if α is a successor,
δ(α, β) = α + (−1 + β) if α is a limit and let γ ∈ {min {α + 1, 1 + β}, . . . , α + β}.
Then there is a discrete sequence (Fn)n<ω of subsequential filters and a subsequential
filter F such that σ(

∫
F Fn) = γ, while σ((Fn)modF) = α and σ(F) = β.

Proof. Consider partitions (An)n<ω , (Bn)n<ω of ω into infinite sets.
Take γ̂ = γ for γ < ω and γ̂ = γ − 1 for infinite successor γ and γ̂ = γ for limit γ.

Consider γ1, γ2 from Remark 2.14 used for α, β, γ̂.
We have two possibilities:

1) There is a pair γ1, γ2, such that γ1 is a successor, note that if α is a successor we
are always in this case;

2) For each pair γ1, γ2, number γ1 is a limit.

Case 1:
Let (θi)i<ω , (βi)i<ω be nondecreasing sequences of successor ordinals such that

(θi + 1) → γ2 and (βi + 1) → β.
For each n < ω define Vi as filters on Ai such that:
Vi = Fβi

r for i ∈ {3n : n < ω};
Vi = Fθi

r for i ∈ {3n+ 1 : n < ω};
Vi is a principal ultrafilter for i ∈ {3n+ 2 : n < ω}.
Put V = Fr for successor γ2, V = {ω} for limit γ2 and define F =

∫
V
Vi.

Let Fk be a filter on Bk such that
Fk = F1

r for k ∈ A3n for some n;
Fk = Fγ1

r for k ∈ A3n+1 for some n < ω;
Fk = Fα

r for k ∈ A3n+2 for some n.
Denote T =

∫
F
Fk and consider sets C1 =

⋃
{Bk : k ∈ A3n, n < ω}, C2 =

⋃
{Bk :

k ∈ A3n+1, n < ω}, C3 =
⋃
{Bk : k ∈ A3n+2, n < ω}.

Note that by Remark 2.12 T |C1
= Fγ

r , T |C2
= F1+β

r , T |C1
= Fα+1

r . Thus, by
Remark 2.13 and by Theorem 2.7, σ(T ) = γ. Computation of σ((Fn)modF) and
σ(F) is obvious.

Case 2: γ1 is a limit.
We work similary to case 1, but this time we need to use cascades (instead of their

contoures) and exploit their structure.
Let (θi)i<ω , (βi)i<ω and (µi)i<ω be nondecreasing sequences of successor ordinals

such that (−1 + θi + 1) → γ2, (βi + 1) → β and (µi) → γ1.
For each n < ω define Vi as a monotone sequential cascade such that maxVi = Ai,

r(v−) = 1 for all v ∈ maxVi for all i < ω such that
r(Vi) = βi for i ∈ {3n : n < ω};
r(Vi) = θi for i ∈ {3n+ 1 : n < ω};
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r(Vi) = 0 for i ∈ {3n+ 2 : n < ω}.
Put V = Fr for successor γ2, V = {ω} for limit γ2 and define F =

∫
V

∫
V

i
.

Let Fk be a filter on Bk such that
Fk = F1

r for k ∈ V3n for some n;
Fk = Fµi

r for k = vi, v ∈ V3n+1 for some n < ω and r(v) = 1;
Fk = Fα

r for k ∈ V3n+2 for some n.
The rest of the proof follows like in the case 1. ⊓⊔

2.2. Subcascades defined by subsets of maxV

First way of finding subcascades is to do it by node. Let V be a cascade and let
v0 ∈ V . Then V ↑ is {v ∈ V : v ⊏ v0} with unchanged order, so it is extremely natural
and easy to use.

In the second method for any set U ⊂ ω we define V ↓U as follows (recall that
maxV ⊂ ω). If U 6#

∫
V , then we set V ↓U = ∅. Assume that U#

∫
V . If r(V ) = 0,

then V ↓U = V . If r(V ) = 1, then V ↓U = {∅V } ∪ {v ∈ maxV : v ∈ U}. If r(V ) > 2,
then V ↓U = {∅V } ∪

⋃
V ↓U
n . Note that if U#

∫
V , then V ↓U preserves sequentiality,

monotonicity of V and the rank of monotone sequential cascade V . Note also, that
V ↓U may be different from V ↓↓U = {v ∈ V : v↑V ∩ U 6= ∅}.

For a comfortable use of the restriction of a cascade by set we will sometimes
need a lemma from Section “Almost the same cascades”, which shows for example for
a fixed monotone sequential cascade V and a set A#V that we can “slightly” change
a cascade to obtain a cascade with the same values of notion of interest for us and
such that maxV ↓A = A, and so an example of use is in section “Almost the same
cascades”.

2.3. Two types of inversed images

Clearly we could define more types, but two presented here are usually used in
proofs. Take a monotone sequential cascade V and a function f : ω → ω, maxV ⊂
f [ω]. To define the first type of inversed images we additionally assume that

r(v) > 1 implies card (f−1[v+ ∩maxV ]) < ∞.

This condition guarantees that inversed image of a monotone sequential cascade is
again a monotone sequential cascade, more precisely it guarantees monotonicity. If the
condition is not fullfilled, then we may consider Ṽ = V \A, where A = {v ∈ maxV :
r(v− > 2), card (f−1(v)) = ∞}. Note that Ṽ is a monotone sequential cascade and
that rank, contour and order are the same as in V .

We define f−1(V ) = (V \ maxV ) ∪ f−1[maxV ], with an order described below.
First define a function g : ω ∪ V → ω ∪ V , by g(n) = f(n) for n ∈ ω, g(v) = v for
v 6∈ ω. Now v′ ⊑Ṽ v′′ if and only if g(v′) ⊑V g(v′′). We may also leave lexicographic
order almost unchanged, i.e., unchanged in elements of rank > 2.
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This type of inversed limit is used for example in the proof of

Theorem 2.16 ([20, Theorem 2.3]). If f : ω → ω and u ∈ Pα, then f(u) ∈ Pβ for
a certain β 6 α.

Simply, without loss of generality, assume that α < ω1 and assume that the claim
does not hold. Take a cascade V of rank γ > α such that

∫
V ⊂ f(u) and prove that∫

(f−1)(V ) ⊂ u.
The second type of inversed images makes sense if there is a “big” set in an image

such that inversed images of elements of this set are infinite. Here “big” may mean
“belonging to

∫
V ”, or “that meshes

∫
V ”, or “that belongs to the (predetermined)

(ultra)filter that contain
∫
V ”, or . . . In two last cases we usually may restrict the

cascade to the set of infinite inversed images (sometimes using same lemmas that
“almost do not change” the cascade), thus we define it in the simplest case when
maxV is contained in the mentioned set.

Let f : ω → ω be a function such that card (f−1(v)) = ∞ for each v ∈ maxV .
Here this extra condition guarantees sequentiality of an inversed image of a sequential
cascade. Formally we have to assume that range and image of f are in the disjoint
copies of ω. Define f−1(V ) = V ∪ f−1[maxV ], the order on f−1(V ) is an extension
by transitivity of the following one: on V ⊂ F−1(V ) we keep an order of V and
n ⊏f−1(V ) f(n) for n ∈ f−1(maxV ). In another words, under above conditions, we
may say that for a monotone sequential cascade V of rank 0, i.e., for a point, f−1(V )
is a monotone sequential cascade of rank 1: f−1(V ) = V ∪f−1[V ], where ∅f−1(V ) = V .

For a cascade V of rank > 1 define f−1(V ) = V "v∈maxV f−1(v↑).
We used this type of inversed image for example to show correspondence between

cascades and <∞ sequences, what lets us answer questions from [16].
Given ultrafilters u, v on ω, recall that v <∞ u if there is a function f : ω → ω such

that f(u) = v and f is neither finite-to-one nor constant on each set U ∈ u. Laflamme
proved that if an ultrafilter u has an infinite decreasing <∞- sequence below, then u

is at least strict Jωω+1 -ultrafilter (c.f.[16, Lemma 3.2]). He also stated the following

Problem 2.17. What about the corresponding influence of increasing <∞-chains
below u? Given such an ultrafilter u with an increasing infinite <∞-sequence u >RK

. . . >∞ u1 >∞ u0 below, fix maps gi and fi witnessing u >RK ui and ui+1 >∞

ui respectively. The problem is really about the possible connections between gi and
fi ◦ gi+1 even relative to members of u.

Problem 2.18. Can we have an ultrafilter u with arbitrary long finite <∞-chains
below u without infinite one? This looks like the most promising way to build a strict
Jωω -ultrafilter.

We find an affirmative answer to the first problem and a negative answer to the
second one. For details see [22].

So how does this correspondence between cascades and <∞- sequences of ultrafil-
ters look like:

Let u be an ultrafilter, suppose that there is a sequence u = u0 >∞ u1 >∞ . . . >∞

un of ultrafilters and take functions fm : ω → ω, each witnessing that um−1 >∞ um.
Since formally levels in a cascade cannot intersect, we may assume that domain of f1
and ranges of fm are subsets of pairwise disjoint copies of ω.
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We will build a monotone sequential cascade V which corresponds to the sequence
above with respect to some U ∈ u. Simply start with a monotone sequential cascade
of rank 1 and on each of n steps take an inversed image of the cascade (by fn−k+1

for step k). Those inverse images may not be sequentional, but a set of elements of
infinite inversed images belongs to the un−k+1 (for step k), so we can restrict our
cascade and make the next step on this resricted cascade. The number of restrictions
is finite and at the end we obtain the cascade we were looking for.

Now take any monotone sequential cascade V of finite rank, with
∫
V ⊂ u. Without

loss of generality we may assume that all branches of V have the same length n. For
each v ∈ V let v̂ be an arbitrary element of max v↑. Consider functions fi : ω → ω

such that fi(v1) = v̂ for each v1 ∈ max v↑, where r(v) = i. Thus u >∞ f1(u) >∞

f2(u) >∞ . . . >∞ fn(u).

2.4. Decreasing the rank, i.e., destroying nodes

We say that a cascade V is built by destruction of nodes of rank 1 in a cascade W of
rank r(W ) > 2 if and only if V = W \R, where R = {w ∈ W : r(w) = 1, r(w−) = 2}.

Observe that if W is a monotone sequential cascade, then V is also a monotone
sequential cascade. Moreover, if r(W ) is finite, then r(V ) = r(W ) − 1 and if r(W ) is
infinite, then r(V ) = r(W ).

Assume that there is a given cascade of rank α and an ordinal 1 6 β 6 α. We shall
describe the operation of decreasing the rank of a cascade W to β. The construction
is inductive:

For a finite α, we can decrease the rank of W from α to β by applying α − β

times the operation of destroying nodes of rank 1 (i.e., if α = β, then the cascade is
unchanged).

For infinite α, suppose that for each pair (δ, γ), where 1 < δ 6 γ < α, and for each
cascade W of rank γ the operation of decreasing the rank of W from γ to δ is defined.
Let W be a monotone sequential cascade of rank α, let (βn) be a nondecreasing
sequence of ordinals such that βn = 0 if and only if r(Wn) = 0, βn 6 r(Wn) and
limn→∞(βn + 1) = β. For each n < ω let Vn be the cascade obtained by decreasing
the rank of Wn to βn. Finally, let V = (n) " Vn.

Clearly, for infinite α the operation of decreasing the rank is not defined uniquely.
Observe also that the described above decrease of the rank of a cascade W does not
change maxW . If a cascade V is obtained from W by decreasing the rank, then we
write V ⊳W . Trivially V ⊳ V and inductively V ⊳W ⇒

∫
V ⊂

∫
W .

This operation has been used for example in the proof of Lemma 2.19. The idea is
to take (by contradiction) a sequence of cascades and a cascade of limit rank which
contour is in the sum of contours of sequence of cascade. By [6] for each cascade from
the sequence there is a set in limit contour which does not belong to the contour of
the cascade in sequence. The point is to control “shrinking” of these sets, to be fixed
on some parts of limit cascades. To do it we apply the operation described above.

Lemma 2.19 ([21, Lemma 6.3]). Let α < ω1 be a limit ordinal and let (Vn : n < ω)
be a sequence of monotone sequential contours such that r(Vn) < r(Vn+1) < α for
every n and such that

⋃
n<ω Vn has the finite intersection property. Then there is no

monotone sequential contour W of rank α such that W ⊂ 〈
⋃

n<ω Vn〉.
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2.5. Almost the same cascades

In this section we quote “trash lemma” and show one operation – “locally finite
partition” which also “almost” does not change the cascade.

Let V be a monotone sequential cascade, A ⊂ ω. We define unseq (V,A) =⋃
{(max v↑) \ A : v ∈ V, (max v↑) \ A 6 #

∫
v↑}. If additionally A = {As : s ∈ S}

is a family of subsets of ω, then we define unseq (V,A) =
⋃

T⊂S unseq (V,
⋃

s∈T As).
Let V and W be monotone sequential cascades such that maxV ⊃ maxW .

We say that W increases the order of V and we write W ⇛ V if ot (fW (U)) >

indec (ot (fV (U))) for each U ⊂ maxW , where indec (α) is the biggest indecompos-
able ordinal 6 α (by Cantor normal form theorem such a number exists and is defined
uniquely). Clearly this relation is idempotent and transitive.

Lemma 2.20 ([22, Lemma 3.4]). Let V be a monotone sequential cascade, (Ai)i=0,...,m

be a partition of maxV such that Ai#
∫
V for each i = 1, . . . ,m. Then there is

a monotone sequential cascade Ṽ such that

1) maxV = max Ṽ ;
2) V ⇚⇛ Ṽ ;
3)

∫
V ↓C =

∫
Ṽ ↓C for each C#

∫
V ;

4) V ↓↓D = Ṽ ↓↓D for
D = ω \

[
unseq (V, {maxV ↓Ai : i = 1, . . . ,m}) ∪

⋃m
i=1(Ai \maxV ↓Ai)

]
;

5) max Ṽ ↓Ai = Ai for each i = 1, . . . ,m.

The idea of locally finite partition of a cascade is to split the set v+ for v 6∈ {{∅V }∪
maxV } into finitely many infinite pieces, and in the place of v put the same number of
copies of v such that a set of new immediate successors of each copy of v is a (different)
piece of the old v+. Formally:

Let V , W be monotone sequential cascades, V ⊂ W , maxV = maxW , ∅V = ∅W .
If there is a finite-to-one function f : W → V such that

1) f |V = id V ;
2) f [w+] ⊂ (f(w))+ for all w ∈ W ;
3) w′, w′′ ∈ f−1(v) implies predWw′ = predWw′′,1

then we say that W is obtained from V by locally finite partition. In such a situation,∫
V =

∫
W and W ⇚⇛ V . We call these properties of a locally finite partition locally

finite partition properties (LFPP).
One may think about the locally finite partition (locally – i.e., on each non-

ekstremal node) as of the inversed operation of gluing:
Let (V i)i<ω be a pairwise disjoint sequence of cascades of ranks> 1. Then

⊕
i<ω V i

is a cascade obtained from
⋃

i<ω V i by identification ∅V 1 = ∅V 2 = . . . = ∅V n = . . ..
Where to apply it – it is essentially usefull when we work with ultrafilters that

contain contours of cascades. For example we compare elements of antichains in two
cascades, thus we may look at pairs of them as on elements of the ω×ω matrix. Since
we work with an ultrafilter, either supdiagonal or subdiagonal (by image) belongs

1 Simply we may say that function f glues disjoint finite subsets of w+, for such w ∈ W that
r(w) > 1, into elements of this subsets and leaves ∅W and maxW unchanged; V is a result of this
gluing.
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to the ultrafilter, and now using “trash lemma” we may compare finite-to-infinite or
infinite-to-finite elements (it is also possibbile that there exists a finite-finite subset).
Here we apply LFPP, which leads us to the situation 1-to-infinite, infinite-to-1, or 1-1.
That can allow us, for instance, to do further induction (by rank).

This technique was used for example in the proof of [22, Theorem 3.11] – the main
theorem of a paper and simultaneously a key to the proof of

Theorem 2.21. (ZFC) The class of strict Jωω -ultrafilters is empty.

which partially answers Baumgartner question from [1] – wheather ordinal ultrafilters
of limit index may exist (even under some extra set-theoretical assumptions).
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14. Katětov M.: On descriptive classification of functions. In: General Topology and its Relations

to Modern Analysis and Algebra II, Proc. Sympos., Prague 1971.
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